题目
Given an array of integers A and let n to be its length.
Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a “rotation function” F on A as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + … + (n-1) * Bk[n-1].
Calculate the maximum value of F(0), F(1), …, F(n-1).
Example:
A = [4, 3, 2, 6]F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
Note:
- n is guaranteed to be less than 10^5.
解决方案
1 | public class Solution { |
注意事项
1.使用如下方法会超时:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17public static int maxRotateFunction(int[] A) {
if(A == null || A.length == 0) return 0;
int N = A.length;
int[] F = new int[N];
for(int k = 0; k < N; k++){
F[k] = 0;
for(int j = 0; j < N; j++){
int index = ((N-k) % N + j) < N ? ((N-k) % N + j) : (((N-k) % N + j) % N);
F[k] = F[k] + j * A[index];
}
}
Arrays.sort(F);
return F[N-1];
}
该方法只是严格按照运算规则逐一进行了运算,但没有找到实际规律,导致大量无用的计算。
2.应该采用的做法中,找到了F函数相邻两项的规律,即:后一项F(i)是在前一项F(i-1)的基础上,减去输入数组之和sum,再加上数组长度N乘以A[i-1]。